1. ホーム
  2. r

[解決済み] グループごとに最初の行を選択する

2022-11-22 13:33:39

質問

このようなデータフレームから

test <- data.frame('id'= rep(1:5,2), 'string'= LETTERS[1:10])
test <- test[order(test$id), ]
rownames(test) <- 1:10

> test
    id string
 1   1      A
 2   1      F
 3   2      B
 4   2      G
 5   3      C
 6   3      H
 7   4      D
 8   4      I
 9   5      E
 10  5      J

各ID/文字列のペアの最初の行で新しいものを作りたいのです。sqldfがその中にRのコードを受け入れた場合、クエリは次のようになります。

res <- sqldf("select id, min(rownames(test)), string 
              from test 
              group by id, string")

> res
    id string
 1   1      A
 3   2      B
 5   3      C
 7   4      D
 9   5      E

のような新しいカラムを作成する以外の解決策はあるのでしょうか?

test$row <- rownames(test)

とmin(row)を使って同じsqldfクエリを実行すると?

どのように解決するのですか?

この場合 duplicated を使うと、非常に素早くこれを行うことができます。

test[!duplicated(test$id),]

ベンチマーク、スピード狂のために。

ju <- function() test[!duplicated(test$id),]
gs1 <- function() do.call(rbind, lapply(split(test, test$id), head, 1))
gs2 <- function() do.call(rbind, lapply(split(test, test$id), `[`, 1, ))
jply <- function() ddply(test,.(id),function(x) head(x,1))
jdt <- function() {
  testd <- as.data.table(test)
  setkey(testd,id)
  # Initial solution (slow)
  # testd[,lapply(.SD,function(x) head(x,1)),by = key(testd)]
  # Faster options :
  testd[!duplicated(id)]               # (1)
  # testd[, .SD[1L], by=key(testd)]    # (2)
  # testd[J(unique(id)),mult="first"]  # (3)
  # testd[ testd[,.I[1L],by=id] ]      # (4) needs v1.8.3. Allows 2nd, 3rd etc
}

library(plyr)
library(data.table)
library(rbenchmark)

# sample data
set.seed(21)
test <- data.frame(id=sample(1e3, 1e5, TRUE), string=sample(LETTERS, 1e5, TRUE))
test <- test[order(test$id), ]

benchmark(ju(), gs1(), gs2(), jply(), jdt(),
    replications=5, order="relative")[,1:6]
#     test replications elapsed relative user.self sys.self
# 1   ju()            5    0.03    1.000      0.03     0.00
# 5  jdt()            5    0.03    1.000      0.03     0.00
# 3  gs2()            5    3.49  116.333      2.87     0.58
# 2  gs1()            5    3.58  119.333      3.00     0.58
# 4 jply()            5    3.69  123.000      3.11     0.51

もう一度、最初のヒートの出場者だけで、より多くのデータとより多くの複製で試してみましょう。

set.seed(21)
test <- data.frame(id=sample(1e4, 1e6, TRUE), string=sample(LETTERS, 1e6, TRUE))
test <- test[order(test$id), ]
benchmark(ju(), jdt(), order="relative")[,1:6]
#    test replications elapsed relative user.self sys.self
# 1  ju()          100    5.48    1.000      4.44     1.00
# 2 jdt()          100    6.92    1.263      5.70     1.15