1. ホーム
  2. python

[解決済み] Pandas DataFrameの連結と追加

2023-03-28 07:30:43

質問

1日のティックデータを含む4つのpandas dataframeのリストがあり、1つのデータフレームにマージしたいです。私は私のタイムスタンプ上のconcatの動作を理解することができません。以下の詳細を参照してください。

data

[<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 35228 entries, 2013-03-28 00:00:07.089000+02:00 to 2013-03-28 18:59:20.357000+02:00
Data columns:
Price       4040  non-null values
Volume      4040  non-null values
BidQty      35228  non-null values
BidPrice    35228  non-null values
AskPrice    35228  non-null values
AskQty      35228  non-null values
dtypes: float64(6),
<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 33088 entries, 2013-04-01 00:03:17.047000+02:00 to 2013-04-01 18:59:58.175000+02:00
Data columns:
Price       3969  non-null values
Volume      3969  non-null values
BidQty      33088  non-null values
BidPrice    33088  non-null values
AskPrice    33088  non-null values
AskQty      33088  non-null values
dtypes: float64(6),
<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 50740 entries, 2013-04-02 00:03:27.470000+02:00 to 2013-04-02 18:59:58.172000+02:00
Data columns:
Price       7326  non-null values
Volume      7326  non-null values
BidQty      50740  non-null values
BidPrice    50740  non-null values
AskPrice    50740  non-null values
AskQty      50740  non-null values
dtypes: float64(6),
<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 60799 entries, 2013-04-03 00:03:06.994000+02:00 to 2013-04-03 18:59:58.180000+02:00
Data columns:
Price       8258  non-null values
Volume      8258  non-null values
BidQty      60799  non-null values
BidPrice    60799  non-null values
AskPrice    60799  non-null values
AskQty      60799  non-null values
dtypes: float64(6)]

使用方法 append を得る。

pd.DataFrame().append(data)

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 179855 entries, 2013-03-28 00:00:07.089000+02:00 to 2013-04-03 18:59:58.180000+02:00
Data columns:
AskPrice    179855  non-null values
AskQty      179855  non-null values
BidPrice    179855  non-null values
BidQty      179855  non-null values
Price       23593  non-null values
Volume      23593  non-null values
dtypes: float64(6)

使用方法 concat を得る。

pd.concat(data)

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 179855 entries, 2013-03-27 22:00:07.089000+02:00 to 2013-04-03 16:59:58.180000+02:00
Data columns:
Price       23593  non-null values
Volume      23593  non-null values
BidQty      179855  non-null values
BidPrice    179855  non-null values
AskPrice    179855  non-null values
AskQty      179855  non-null values
dtypes: float64(6)

を使ったときにインデックスがどのように変化するかに注目してください。 concat . なぜこのようなことが起こるのでしょうか? concat で得られた結果を再現するために append ? (このため concat の方が速いので、24.6ms/loop vs 3.02s/loop)

どのように解決するのですか?

つまり、appendとconcatでやっていることは ほとんど と同じです。違いは、空のDataFrameです。なぜかこれが大きなスローダウンを引き起こすのですが、正確な理由はわかりません。以下は、基本的にあなたが行ったことを再現したものです。

私はほとんどいつも concat を使用します (この場合、空のフレームを除いて、これらは同等です)。 空のフレームを使用しない場合、それらは同じ速度になります。

In [17]: df1 = pd.DataFrame(dict(A = range(10000)),index=pd.date_range('20130101',periods=10000,freq='s'))

In [18]: df1
Out[18]: 
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 10000 entries, 2013-01-01 00:00:00 to 2013-01-01 02:46:39
Freq: S
Data columns (total 1 columns):
A    10000  non-null values
dtypes: int64(1)

In [19]: df4 = pd.DataFrame()

The concat

In [20]: %timeit pd.concat([df1,df2,df3])
1000 loops, best of 3: 270 us per loop

This is equavalent of your append

In [21]: %timeit pd.concat([df4,df1,df2,df3])
10 loops, best of 

 3: 56.8 ms per loop