1. ホーム
  2. matlab

[解決済み] MATLABで隣接行列を構築する

2022-02-25 09:23:01

質問

サイズN×Mのグリッド上に配置された点の集合を考える。 このような隣接行列を構築するために 隣接する点は接続されている。

例えば、3×3グリッドのグラフの場合。

1-2-3
| | |
4-5-6
| | |
7-8-9

対応する隣接行列があるはずです。

+---+------------------------------------------------------+
|   |   1     2     3     4     5     6     7     8     9  |
+---+------------------------------------------------------+
| 1 |   0     1     0     1     0     0     0     0     0  |
| 2 |   1     0     1     0     1     0     0     0     0  |
| 3 |   0     1     0     0     0     1     0     0     0  |
| 4 |   1     0     0     0     1     0     1     0     0  |
| 5 |   0     1     0     1     0     1     0     1     0  |
| 6 |   0     0     1     0     1     0     0     0     1  |
| 7 |   0     0     0     1     0     0     0     1     0  |
| 8 |   0     0     0     0     1     0     1     0     1  |
| 9 |   0     0     0     0     0     1     0     1     0  |
+---+------------------------------------------------------+

おまけに、4連結の近傍点でも8連結の近傍点でも解けるはずだ、です。

   o             o  o  o
o  X  o   vs.    o  X  o
   o             o  o  o

これが今のところあるコードです。

N = 3; M = 3;
adj = zeros(N*M);

for i=1:N
    for j=1:M
        k = sub2ind([N M],i,j);
        if i>1
            ii=i-1; jj=j;
            adj(k,sub2ind([N M],ii,jj)) = 1; 
        end
        if i<N
            ii=i+1; jj=j;
            adj(k,sub2ind([N M],ii,jj)) = 1; 
        end
        if j>1
            ii=i; jj=j-1;
            adj(k,sub2ind([N M],ii,jj)) = 1; 
        end
        if j<M
            ii=i; jj=j+1;
            adj(k,sub2ind([N M],ii,jj)) = 1; 
        end
    end
end

ループを回避するにはどうしたらよいでしょうか?

解決方法は?

お気づきのように、作成される隣接行列には明確なパターンがあります。具体的には、それらは対称的であり 帯状 . この事実を利用し,行列を簡単に作成するために diag 関数(または spdiags 関数を使用します)。ここでは、上のサンプル行列を例にして、それぞれの場合の隣接行列の作り方を説明します。

4連結の隣人。

mat = [1 2 3; 4 5 6; 7 8 9];                 % Sample matrix
[r, c] = size(mat);                          % Get the matrix size
diagVec1 = repmat([ones(c-1, 1); 0], r, 1);  % Make the first diagonal vector
                                             %   (for horizontal connections)
diagVec1 = diagVec1(1:end-1);                % Remove the last value
diagVec2 = ones(c*(r-1), 1);                 % Make the second diagonal vector
                                             %   (for vertical connections)
adj = diag(diagVec1, 1)+diag(diagVec2, c);   % Add the diagonals to a zero matrix
adj = adj+adj.';                             % Add the matrix to a transposed copy of
                                             %   itself to make it symmetric

そして、次のような行列が出来上がります。

adj =

     0  1  0  1  0  0  0  0  0
     1  0  1  0  1  0  0  0  0
     0  1  0  0  0  1  0  0  0
     1  0  0  0  1  0  1  0  0
     0  1  0  1  0  1  0  1  0
     0  0  1  0  1  0  0  0  1
     0  0  0  1  0  0  0  1  0
     0  0  0  0  1  0  1  0  1
     0  0  0  0  0  1  0  1  0


8コネクテッド・ネイバーズ

mat = [1 2 3; 4 5 6; 7 8 9];                 % Sample matrix
[r, c] = size(mat);                          % Get the matrix size
diagVec1 = repmat([ones(c-1, 1); 0], r, 1);  % Make the first diagonal vector
                                             %   (for horizontal connections)
diagVec1 = diagVec1(1:end-1);                % Remove the last value
diagVec2 = [0; diagVec1(1:(c*(r-1)))];       % Make the second diagonal vector
                                             %   (for anti-diagonal connections)
diagVec3 = ones(c*(r-1), 1);                 % Make the third diagonal vector
                                             %   (for vertical connections)
diagVec4 = diagVec2(2:end-1);                % Make the fourth diagonal vector
                                             %   (for diagonal connections)
adj = diag(diagVec1, 1)+...                  % Add the diagonals to a zero matrix
      diag(diagVec2, c-1)+...
      diag(diagVec3, c)+...
      diag(diagVec4, c+1);
adj = adj+adj.';                             % Add the matrix to a transposed copy of
                                             %   itself to make it symmetric

そして、次のような行列が出来上がります。

adj =

     0  1  0  1  1  0  0  0  0
     1  0  1  1  1  1  0  0  0
     0  1  0  0  1  1  0  0  0
     1  1  0  0  1  0  1  1  0
     1  1  1  1  0  1  1  1  1
     0  1  1  0  1  0  0  1  1
     0  0  0  1  1  0  0  1  0
     0  0  0  1  1  1  1  0  1
     0  0  0  0  1  1  0  1  0