1. ホーム
  2. sql

Spark SQLのDataFrameを複雑な型でクエリする

2023-08-13 21:31:53

質問

マップや配列のような複雑な型を持つRDDにクエリを発行するにはどうしたらよいでしょうか? たとえば、私がこのテストコードを書いていたとき。

case class Test(name: String, map: Map[String, String])
val map = Map("hello" -> "world", "hey" -> "there")
val map2 = Map("hello" -> "people", "hey" -> "you")
val rdd = sc.parallelize(Array(Test("first", map), Test("second", map2)))

のような構文になると思っていました。

sqlContext.sql("SELECT * FROM rdd WHERE map.hello = world")

または

sqlContext.sql("SELECT * FROM rdd WHERE map[hello] = world")

と表示されますが

MapType(StringType,StringType,true) 型のネストされたフィールドにアクセスできない。

であり

org.apache.spark.sql.catalyst.errors.package$TreeNodeException: 未解決の属性

をそれぞれ追加しました。

どのように解決するのですか?

カラムの種類に依存します。まずはダミーデータから見てみましょう。

import org.apache.spark.sql.functions.{udf, lit}
import scala.util.Try

case class SubRecord(x: Int)
case class ArrayElement(foo: String, bar: Int, vals: Array[Double])
case class Record(
  an_array: Array[Int], a_map: Map[String, String], 
  a_struct: SubRecord, an_array_of_structs: Array[ArrayElement])


val df = sc.parallelize(Seq(
  Record(Array(1, 2, 3), Map("foo" -> "bar"), SubRecord(1),
         Array(
           ArrayElement("foo", 1, Array(1.0, 2.0, 2.0)),
           ArrayElement("bar", 2, Array(3.0, 4.0, 5.0)))),
  Record(Array(4, 5, 6), Map("foz" -> "baz"), SubRecord(2),
         Array(ArrayElement("foz", 3, Array(5.0, 6.0)), 
               ArrayElement("baz", 4, Array(7.0, 8.0))))
)).toDF

df.registerTempTable("df")
df.printSchema

// root
// |-- an_array: array (nullable = true)
// |    |-- element: integer (containsNull = false)
// |-- a_map: map (nullable = true)
// |    |-- key: string
// |    |-- value: string (valueContainsNull = true)
// |-- a_struct: struct (nullable = true)
// |    |-- x: integer (nullable = false)
// |-- an_array_of_structs: array (nullable = true)
// |    |-- element: struct (containsNull = true)
// |    |    |-- foo: string (nullable = true)
// |    |    |-- bar: integer (nullable = false)
// |    |    |-- vals: array (nullable = true)
// |    |    |    |-- element: double (containsNull = false)

  • 配列 ( ArrayType )カラムの配列です。

    • Column.getItem メソッド

      df.select($"an_array".getItem(1)).show
      
      // +-----------+
      // |an_array[1]|
      // +-----------+
      // |          2|
      // |          5|
      // +-----------+
      
      
    • Hiveのブラケット構文です。

      sqlContext.sql("SELECT an_array[1] FROM df").show
      
      // +---+
      // |_c0|
      // +---+
      // |  2|
      // |  5|
      // +---+
      
      
    • UDF

      val get_ith = udf((xs: Seq[Int], i: Int) => Try(xs(i)).toOption)
      
      df.select(get_ith($"an_array", lit(1))).show
      
      // +---------------+
      // |UDF(an_array,1)|
      // +---------------+
      // |              2|
      // |              5|
      // +---------------+
      
      
    • 上記のメソッドに加えて、Sparkは複雑な型に対して操作する組み込み関数のリストを増やしています。注目すべき例として、以下のような高次の関数があります。 transform (SQL 2.4+, Scala 3.0+, PySpark / SparkR 3.1+)のような高次関数が含まれます。

      df.selectExpr("transform(an_array, x -> x + 1) an_array_inc").show
      // +------------+
      // |an_array_inc|
      // +------------+
      // |   [2, 3, 4]|
      // |   [5, 6, 7]|
      // +------------+
      
      import org.apache.spark.sql.functions.transform
      
      df.select(transform($"an_array", x => x + 1) as "an_array_inc").show
      // +------------+
      // |an_array_inc|
      // +------------+
      // |   [2, 3, 4]|
      // |   [5, 6, 7]|
      // +------------+
      
      
    • filter (SQL2.4+、Scala3.0+、Python / SparkR 3.1+)

      df.selectExpr("filter(an_array, x -> x % 2 == 0) an_array_even").show
      // +-------------+
      // |an_array_even|
      // +-------------+
      // |          [2]|
      // |       [4, 6]|
      // +-------------+
      
      import org.apache.spark.sql.functions.filter
      
      df.select(filter($"an_array", x => x % 2 === 0) as "an_array_even").show
      // +-------------+
      // |an_array_even|
      // +-------------+
      // |          [2]|
      // |       [4, 6]|
      // +-------------+
      
      
    • aggregate (SQL 2.4+, Scala 3.0+, PySpark / SparkR 3.1+)を使用することができます。

      df.selectExpr("aggregate(an_array, 0, (acc, x) -> acc + x, acc -> acc) an_array_sum").show
      // +------------+
      // |an_array_sum|
      // +------------+
      // |           6|
      // |          15|
      // +------------+
      
      import org.apache.spark.sql.functions.aggregate
      
      df.select(aggregate($"an_array", lit(0), (x, y) => x + y) as "an_array_sum").show
      // +------------+                                                                  
      // |an_array_sum|
      // +------------+
      // |           6|
      // |          15|
      // +------------+
      
      
    • 配列処理関数( array_* )のように array_distinct (2.4+):

      import org.apache.spark.sql.functions.array_distinct
      
      df.select(array_distinct($"an_array_of_structs.vals"(0))).show
      // +-------------------------------------------+
      // |array_distinct(an_array_of_structs.vals[0])|
      // +-------------------------------------------+
      // |                                 [1.0, 2.0]|
      // |                                 [5.0, 6.0]|
      // +-------------------------------------------+
      
      
    • array_max ( array_min , 2.4+):

      import org.apache.spark.sql.functions.array_max
      
      df.select(array_max($"an_array")).show
      // +-------------------+
      // |array_max(an_array)|
      // +-------------------+
      // |                  3|
      // |                  6|
      // +-------------------+
      
      
    • flatten (2.4+)

      import org.apache.spark.sql.functions.flatten
      
      df.select(flatten($"an_array_of_structs.vals")).show
      // +---------------------------------+
      // |flatten(an_array_of_structs.vals)|
      // +---------------------------------+
      // |             [1.0, 2.0, 2.0, 3...|
      // |             [5.0, 6.0, 7.0, 8.0]|
      // +---------------------------------+
      
      
    • arrays_zip (2.4+):

      import org.apache.spark.sql.functions.arrays_zip
      
      df.select(arrays_zip($"an_array_of_structs.vals"(0), $"an_array_of_structs.vals"(1))).show(false)
      // +--------------------------------------------------------------------+
      // |arrays_zip(an_array_of_structs.vals[0], an_array_of_structs.vals[1])|
      // +--------------------------------------------------------------------+
      // |[[1.0, 3.0], [2.0, 4.0], [2.0, 5.0]]                                |
      // |[[5.0, 7.0], [6.0, 8.0]]                                            |
      // +--------------------------------------------------------------------+
      
      
    • array_union (2.4+):

      import org.apache.spark.sql.functions.array_union
      
      df.select(array_union($"an_array_of_structs.vals"(0), $"an_array_of_structs.vals"(1))).show
      // +---------------------------------------------------------------------+
      // |array_union(an_array_of_structs.vals[0], an_array_of_structs.vals[1])|
      // +---------------------------------------------------------------------+
      // |                                                 [1.0, 2.0, 3.0, 4...|
      // |                                                 [5.0, 6.0, 7.0, 8.0]|
      // +---------------------------------------------------------------------+
      
      
    • slice (2.4+):

      import org.apache.spark.sql.functions.slice
      
      df.select(slice($"an_array", 2, 2)).show
      // +---------------------+
      // |slice(an_array, 2, 2)|
      // +---------------------+
      // |               [2, 3]|
      // |               [5, 6]|
      // +---------------------+
      
      
  • マップ ( MapType ) の列

    • を使って Column.getField メソッドを使用します。

      df.select($"a_map".getField("foo")).show
      
      // +----------+
      // |a_map[foo]|
      // +----------+
      // |       bar|
      // |      null|
      // +----------+
      
      
    • はHiveのブラケット構文を使っています。

      sqlContext.sql("SELECT a_map['foz'] FROM df").show
      
      // +----+
      // | _c0|
      // +----+
      // |null|
      // | baz|
      // +----+
      
      
    • はドット構文でフルパスを使用します。

      df.select($"a_map.foo").show
      
      // +----+
      // | foo|
      // +----+
      // | bar|
      // |null|
      // +----+
      
      
    • UDFの使用

      val get_field = udf((kvs: Map[String, String], k: String) => kvs.get(k))
      
      df.select(get_field($"a_map", lit("foo"))).show
      
      // +--------------+
      // |UDF(a_map,foo)|
      // +--------------+
      // |           bar|
      // |          null|
      // +--------------+
      
      
    • 増え続ける map_* のような機能 map_keys (2.3+)

      import org.apache.spark.sql.functions.map_keys
      
      df.select(map_keys($"a_map")).show
      // +---------------+
      // |map_keys(a_map)|
      // +---------------+
      // |          [foo]|
      // |          [foz]|
      // +---------------+
      
      
    • または map_values (2.3+)

      import org.apache.spark.sql.functions.map_values
      
      df.select(map_values($"a_map")).show
      // +-----------------+
      // |map_values(a_map)|
      // +-----------------+
      // |            [bar]|
      // |            [baz]|
      // +-----------------+
      
      

    ご確認ください SPARK-23899 をご覧ください。

  • 構造体 ( StructType ) のカラムをドット構文でフルパスで指定します。

    • データフレームAPIを使用した場合

      df.select($"a_struct.x").show
      
      // +---+
      // |  x|
      // +---+
      // |  1|
      // |  2|
      // +---+
      
      
    • 生のSQLで

      sqlContext.sql("SELECT a_struct.x FROM df").show
      
      // +---+
      // |  x|
      // +---+
      // |  1|
      // |  2|
      // +---+
      
      
  • の配列内のフィールド structs は、ドットシンタックス、名前、標準的な Column メソッドを使ってアクセスできます。

    df.select($"an_array_of_structs.foo").show
    
    // +----------+
    // |       foo|
    // +----------+
    // |[foo, bar]|
    // |[foz, baz]|
    // +----------+
    
    sqlContext.sql("SELECT an_array_of_structs[0].foo FROM df").show
    
    // +---+
    // |_c0|
    // +---+
    // |foo|
    // |foz|
    // +---+
    
    df.select($"an_array_of_structs.vals".getItem(1).getItem(1)).show
    
    // +------------------------------+
    // |an_array_of_structs.vals[1][1]|
    // +------------------------------+
    // |                           4.0|
    // |                           8.0|
    // +------------------------------+
    
    
  • ユーザー定義型(UDT)のフィールドは、UDFを使用してアクセスすることができます。参照 UDTの属性を参照するSpark SQL を参照してください。

注意事項 :

  • Spark のバージョンによっては、これらのメソッドのいくつかは HiveContext . UDFはバージョンに関係なく、標準の SQLContextHiveContext .
  • 一般的に言って、ネストされた値は二級市民です。すべての典型的な操作がネストされたフィールドでサポートされているわけではありません。コンテキストによっては、スキーマをフラット化したり、コレクションを展開したりする方が良い場合もあります。

    df.select(explode($"an_array_of_structs")).show
    
    // +--------------------+
    // |                 col|
    // +--------------------+
    // |[foo,1,WrappedArr...|
    // |[bar,2,WrappedArr...|
    // |[foz,3,WrappedArr...|
    // |[baz,4,WrappedArr...|
    // +--------------------+
    
    
  • ドット構文は、ワイルドカード文字 ( * ) と組み合わせることで、名前を明示的に指定することなく (おそらく複数の) フィールドを選択することができます。

    df.select($"a_struct.*").show
    // +---+
    // |  x|
    // +---+
    // |  1|
    // |  2|
    // +---+
    
    
  • JSONカラムの問い合わせは get_json_objectfrom_json 関数を使用することができます。参照 Spark DataFramesを使用してJSONデータカラムをクエリする方法は? を参照してください。