1. ホーム
  2. python

Pyspark。複数の配列の列を行に分割する

2023-07-08 16:10:41

質問

1つの行といくつかの列を持つデータフレームがあります。いくつかの列は単一の値であり、他の列はリストです。すべてのリスト列は、同じ長さです。 リスト以外の列はそのままにして、各リスト列を別の行に分割したいと思います。

サンプルDFです。

from pyspark import Row
from pyspark.sql import SQLContext
from pyspark.sql.functions import explode

sqlc = SQLContext(sc)

df = sqlc.createDataFrame([Row(a=1, b=[1,2,3],c=[7,8,9], d='foo')])
# +---+---------+---------+---+
# |  a|        b|        c|  d|
# +---+---------+---------+---+
# |  1|[1, 2, 3]|[7, 8, 9]|foo|
# +---+---------+---------+---+

私が欲しいもの

+---+---+----+------+
|  a|  b|  c |    d |
+---+---+----+------+
|  1|  1|  7 |  foo |
|  1|  2|  8 |  foo |
|  1|  3|  9 |  foo |
+---+---+----+------+

リストカラムが1つしかなければ explode :

df_exploded = df.withColumn('b', explode('b'))
# >>> df_exploded.show()
# +---+---+---------+---+
# |  a|  b|        c|  d|
# +---+---+---------+---+
# |  1|  1|[7, 8, 9]|foo|
# |  1|  2|[7, 8, 9]|foo|
# |  1|  3|[7, 8, 9]|foo|
# +---+---+---------+---+

しかし、もし私が explode を指定すると c カラムを使用すると、必要な長さの二乗のデータフレームが作成されます。

df_exploded_again = df_exploded.withColumn('c', explode('c'))
# >>> df_exploded_again.show()
# +---+---+---+---+
# |  a|  b|  c|  d|
# +---+---+---+---+
# |  1|  1|  7|foo|
# |  1|  1|  8|foo|
# |  1|  1|  9|foo|
# |  1|  2|  7|foo|
# |  1|  2|  8|foo|
# |  1|  2|  9|foo|
# |  1|  3|  7|foo|
# |  1|  3|  8|foo|
# |  1|  3|  9|foo|
# +---+---+---+---+

私が欲しいのは - 各列について、その列の配列のn番目の要素を取り、それを新しい行に追加することです。私はデータフレーム内のすべての列にexplodeをマッピングしようとしましたが、それもうまくいかないようです。

df_split = df.rdd.map(lambda col: df.withColumn(col, explode(col))).toDF()

どのように解決するのですか?

Spark >= 2.4

を置き換えることができます。 zip_ udfarrays_zip 機能

from pyspark.sql.functions import arrays_zip, col, explode

(df
    .withColumn("tmp", arrays_zip("b", "c"))
    .withColumn("tmp", explode("tmp"))
    .select("a", col("tmp.b"), col("tmp.c"), "d"))

スパーク 2.4

とは DataFrames とUDFを使用します。

from pyspark.sql.types import ArrayType, StructType, StructField, IntegerType
from pyspark.sql.functions import col, udf, explode

zip_ = udf(
  lambda x, y: list(zip(x, y)),
  ArrayType(StructType([
      # Adjust types to reflect data types
      StructField("first", IntegerType()),
      StructField("second", IntegerType())
  ]))
)

(df
    .withColumn("tmp", zip_("b", "c"))
    # UDF output cannot be directly passed to explode
    .withColumn("tmp", explode("tmp"))
    .select("a", col("tmp.first").alias("b"), col("tmp.second").alias("c"), "d"))

とは RDDs :

(df
    .rdd
    .flatMap(lambda row: [(row.a, b, c, row.d) for b, c in zip(row.b, row.c)])
    .toDF(["a", "b", "c", "d"]))

どちらの解決策も、Pythonの通信オーバーヘッドにより非効率的です。データサイズが固定であれば、このようにすることができます。

from functools import reduce
from pyspark.sql import DataFrame

# Length of array
n = 3

# For legacy Python you'll need a separate function
# in place of method accessor 
reduce(
    DataFrame.unionAll, 
    (df.select("a", col("b").getItem(i), col("c").getItem(i), "d")
        for i in range(n))
).toDF("a", "b", "c", "d")

とかでもいい。

from pyspark.sql.functions import array, struct

# SQL level zip of arrays of known size
# followed by explode
tmp = explode(array(*[
    struct(col("b").getItem(i).alias("b"), col("c").getItem(i).alias("c"))
    for i in range(n)
]))

(df
    .withColumn("tmp", tmp)
    .select("a", col("tmp").getItem("b"), col("tmp").getItem("c"), "d"))

UDFやRDDと比較して、大幅に高速化されるはずです。任意の数のカラムをサポートするように一般化。

# This uses keyword only arguments
# If you use legacy Python you'll have to change signature
# Body of the function can stay the same
def zip_and_explode(*colnames, n):
    return explode(array(*[
        struct(*[col(c).getItem(i).alias(c) for c in colnames])
        for i in range(n)
    ]))

df.withColumn("tmp", zip_and_explode("b", "c", n=3))