[解決済み] ある行列から固有ベクトルの異なる解を得ることができるでしょうか?
2022-02-04 15:32:37
質問
ある行列の固有ベクトルを求めることが目的です。Matlabでは
[V,D] = eig(M)
を使って、行列の固有ベクトルを求める。
[V,D] = eig(M)
. または、ウェブサイトを利用しました。
ウルフラムアルファ
を使い、結果を再確認しました。
私たちは
10X10
という行列があります。
M
:
0.736538062307847 -0.638137874226607 -0.409041107160722 -0.221115060391256 -0.947102932298308 0.0307937582853794 1.23891356582639 1.23213871779652 0.763885436104244 -0.805948245321096
-1.00495215920171 -0.563583317483057 -0.250162608745252 0.0837145788064272 -0.201241986127792 -0.0351472158148094 -1.36303599752928 0.00983020375259212 -0.627205458137858 0.415060573134481
0.372470672825535 -0.356014310976260 -0.331871925811400 0.151334279460039 0.0983275066581362 -0.0189726910991071 0.0261595600177302 -0.752014960080128 -0.00643718050231003 0.802097123260581
1.26898635468390 -0.444779390923673 0.524988731629985 0.908008064819586 -1.66569084499144 -0.197045800083481 1.04250295411159 -0.826891197039745 2.22636770820512 0.226979917020922
-0.307384714237346 0.00930402052877782 0.213893752473805 -1.05326116146192 -0.487883985126739 0.0237598951768898 -0.224080566774865 0.153775526014521 -1.93899137944122 -0.300158630162419
7.04441299430365 -1.34338456640793 -0.461083493351887 5.30708311554706 -3.82919170270243 -2.18976040860706 6.38272280044908 2.33331906669527 9.21369926457948 -2.11599193328696
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
D
:
2.84950796497613 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i
0.00000000000000 + 0.00000000000000i 1.08333535157800 + 0.971374792725758i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i
0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 1.08333535157800 - 0.971374792725758i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i
0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i -2.05253164206377 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i
0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i -0.931513274011512 + 0.883950434279189i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i
0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i -0.931513274011512 - 0.883950434279189i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i
0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i -1.41036956613286 + 0.354930202789307i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i
0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i -1.41036956613286 - 0.354930202789307i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i
0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i -0.374014257422547 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i
0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.00000000000000 + 0.00000000000000i 0.165579401742139 + 0.00000000000000i
V
:
-0.118788118233448 + 0.00000000000000i 0.458452024790792 + 0.00000000000000i 0.458452024790792 + -0.00000000000000i -0.00893883603500744 + 0.00000000000000i -0.343151745490688 - 0.0619235203325516i -0.343151745490688 + 0.0619235203325516i -0.415371644459693 + 0.00000000000000i -0.415371644459693 + -0.00000000000000i -0.0432672840354827 + 0.00000000000000i 0.0205670999343567 + 0.00000000000000i
0.0644460666316380 + 0.00000000000000i -0.257319460426423 + 0.297135138351391i -0.257319460426423 - 0.297135138351391i 0.000668740843331284 + 0.00000000000000i -0.240349418297316 + 0.162117384568559i -0.240349418297316 - 0.162117384568559i -0.101240986260631 + 0.370051721507625i -0.101240986260631 - 0.370051721507625i 0.182133003667802 + 0.00000000000000i 0.0870047828436781 + 0.00000000000000i
-0.0349638967773464 + 0.00000000000000i -0.0481533171088709 - 0.333551383088345i -0.0481533171088709 + 0.333551383088345i -5.00304864960391e-05 + 0.00000000000000i -0.0491721720673945 + 0.235973015480054i -0.0491721720673945 - 0.235973015480054i 0.305000451960374 + 0.180389787086258i 0.305000451960374 - 0.180389787086258i -0.766686233364027 + 0.00000000000000i 0.368055402163444 + 0.00000000000000i
-0.328483258287378 + 0.00000000000000i -0.321235466934363 - 0.0865401147007471i -0.321235466934363 + 0.0865401147007471i -0.0942807049530764 + 0.00000000000000i -0.0354015249204485 + 0.395526630779543i -0.0354015249204485 - 0.395526630779543i -0.0584777280581259 - 0.342389123727367i -0.0584777280581259 + 0.342389123727367i 0.0341847135233905 + 0.00000000000000i -0.00637190625187862 + 0.00000000000000i
0.178211880664383 + 0.00000000000000i 0.236391683569043 - 0.159628238798322i 0.236391683569043 + 0.159628238798322i 0.00705341924756006 + 0.00000000000000i 0.208292766328178 + 0.256171148954103i 0.208292766328178 - 0.256171148954103i -0.319285221542254 - 0.0313551221105837i -0.319285221542254 + 0.0313551221105837i -0.143900055026164 + 0.00000000000000i -0.0269550068563120 + 0.00000000000000i
-0.908350536903352 + 0.00000000000000i 0.208752559894992 + 0.121276611951418i 0.208752559894992 - 0.121276611951418i -0.994408141243082 + 0.00000000000000i 0.452243212306010 + 0.00000000000000i 0.452243212306010 + -0.00000000000000i 0.273997199582534 - 0.0964058973906923i 0.273997199582534 + 0.0964058973906923i -0.0270087356931836 + 0.00000000000000i 0.00197408431000798 + 0.00000000000000i
-0.0416872385315279 + 0.00000000000000i 0.234583850413183 - 0.210340074973091i 0.234583850413183 + 0.210340074973091i 0.00435502958971167 + 0.00000000000000i 0.160642433241717 + 0.218916331789935i 0.160642433241717 - 0.218916331789935i 0.276971588308683 + 0.0697020017773242i 0.276971588308683 - 0.0697020017773242i 0.115683515205146 + 0.00000000000000i 0.124212913671392 + 0.00000000000000i
0.0226165595687948 + 0.00000000000000i 0.00466011130798999 + 0.270099580217056i 0.00466011130798999 - 0.270099580217056i -0.000325812684017280 + 0.00000000000000i 0.222664282388928 + 0.0372585184944646i 0.222664282388928 - 0.0372585184944646i 0.129604953142137 - 0.229763189016417i 0.129604953142137 + 0.229763189016417i -0.486968076893485 + 0.00000000000000i 0.525456559984271 + 0.00000000000000i
-0.115277185508808 + 0.00000000000000i -0.204076984892299 + 0.103102999488027i -0.204076984892299 - 0.103102999488027i 0.0459338618810664 + 0.00000000000000i 0.232009172507840 - 0.204443701767505i 0.232009172507840 + 0.204443701767505i -0.0184618718969471 + 0.238119465887194i -0.0184618718969471 - 0.238119465887194i -0.0913994930540061 + 0.00000000000000i -0.0384824814248494 + 0.00000000000000i
-0.0146296269545178 + 0.00000000000000i 0.0235283849818557 - 0.215256480570249i 0.0235283849818557 + 0.215256480570249i -0.00212178438590738 + 0.00000000000000i 0.0266030060993678 - 0.209766836873709i 0.0266030060993678 + 0.209766836873709i -0.172989400304240 - 0.0929551855455724i -0.172989400304240 + 0.0929551855455724i -0.309302420721495 + 0.00000000000000i 0.750171291624984 + 0.00000000000000i
以下のような結果を得ました。
- オリジナルのマトリクス。
- WolframAlphaの結果です。
- Matlab Eigの結果です。
D(固有値)
V(固有ベクトル)
固有ベクトルについて、異なる解を得ることは可能でしょうか、それとも一意な答えであるべきでしょうか。この概念を明確にしたいと思っています。
どのように解決するのですか?
様々な理由により、固有ベクトルは一意ではありません。符号を変えても、同じ固有値に対する固有ベクトルは固有ベクトルのままです。実際、任意の定数を乗じても、固有ベクトルはその定数のままです。ツールによっては、異なる正規化が選択されることもあります。
固有値の多重度が1より大きい場合、固有ベクトルは同じ部分空間にまたがる限り、やはり一意ではありません。
関連
-
[解決済み] 第一差分フィルタ
-
[解決済み] MATLABでベクトルからNaNを除去する
-
[解決済み] Matlabでシンプソンの1-3 (h / 3)メソッド
-
[解決済み] 演算子のオペランドは、論理スカラー値に変換可能でなければならない。
-
[解決済み] ベクトルにおける四分位値の0.25から0.75までの数値 MATLAB
-
[解決済み] matlab、デフォルトの図サイズを設定するが、位置は気にしない?
-
[解決済み] MatlabのA=[x; y']は何を意味するのですか?
-
[解決済み] MatLab: 関数の引数を設定する
-
[解決済み] Matlabでεの機械値を求める
-
[解決済み] matlabでchi2gof関数を理解する
最新
-
nginxです。[emerg] 0.0.0.0:80 への bind() に失敗しました (98: アドレスは既に使用中です)
-
htmlページでギリシャ文字を使うには
-
ピュアhtml+cssでの要素読み込み効果
-
純粋なhtml + cssで五輪を実現するサンプルコード
-
ナビゲーションバー・ドロップダウンメニューのHTML+CSSサンプルコード
-
タイピング効果を実現するピュアhtml+css
-
htmlの選択ボックスのプレースホルダー作成に関する質問
-
html css3 伸縮しない 画像表示効果
-
トップナビゲーションバーメニュー作成用HTML+CSS
-
html+css 実装 サイバーパンク風ボタン
おすすめ
-
[解決済み] MATLAB: symからlogicalへの変換ができない
-
[解決済み] MATLABエラー "このコンテキストでは関数定義は許可されていません。" [重複しています]。
-
[解決済み] Matlabで列ベクトルを反復処理する方法は?[重複].
-
[解決済み] Matlabのstrcat関数が空白を含んでいる場合のトラブル
-
[解決済み] MATLABでカラーバーのスケールを制御する
-
[解決済み] Matlabでcorr2関数を説明する
-
[解決済み] MATLABで分数を10進数に変換する【重複】。
-
[解決済み] Wolfram AlphaとMATLABでは伝達関数のプロットが異なる
-
[解決済み] 指定された矩形に含まれる配列中の点を見つける( matlab )
-
[解決済み] mnrfitを用いたmatlabでのロジスティック回帰