1. ホーム
  2. r

各グループ内でラグ変数を作成する方法は?

2023-09-27 16:59:16

質問

data.tableを持っています。

set.seed(1)
data <- data.table(time = c(1:3, 1:4),
                   groups = c(rep(c("b", "a"), c(3, 4))),
                   value = rnorm(7))

data
#    groups time      value
# 1:      b    1 -0.6264538
# 2:      b    2  0.1836433
# 3:      b    3 -0.8356286
# 4:      a    1  1.5952808
# 5:      a    2  0.3295078
# 6:      a    3 -0.8204684
# 7:      a    4  0.4874291

私は"value"列の遅延バージョンを計算したいです。 内の 各レベルの "グループ" で。

結果は次のようになります。

#   groups time      value  lag.value
# 1      a    1  1.5952808         NA
# 2      a    2  0.3295078  1.5952808
# 3      a    3 -0.8204684  0.3295078
# 4      a    4  0.4874291 -0.8204684
# 5      b    1 -0.6264538         NA
# 6      b    2  0.1836433 -0.6264538
# 7      b    3 -0.8356286  0.1836433

を使ってみました。 lag を直接使ってみました。

data$lag.value <- lag(data$value) 

...これは明らかにうまくいかないでしょう。

私も試しました。

unlist(tapply(data$value, data$groups, lag))
 a1         a2         a3         a4         b1         b2         b3 
 NA -0.1162932  0.4420753  2.1505440         NA  0.5894583 -0.2890288 

これはほぼ私が欲しいものです。しかし、生成されたベクトルは、data.tableの順序とは異なる順序で並べられており、これは問題です。

ベースR、plyr、dplyr、data.tableでこれを行うための最も効率的な方法は何ですか?

どのように解決するのですか?

この方法は data.table

 library(data.table)
 data[, lag.value:=c(NA, value[-.N]), by=groups]
  data
 #   time groups       value   lag.value
 #1:    1      a  0.02779005          NA
 #2:    2      a  0.88029938  0.02779005
 #3:    3      a -1.69514201  0.88029938
 #4:    1      b -1.27560288          NA
 #5:    2      b -0.65976434 -1.27560288
 #6:    3      b -1.37804943 -0.65976434
 #7:    4      b  0.12041778 -1.37804943

複数カラムの場合。

nm1 <- grep("^value", colnames(data), value=TRUE)
nm2 <- paste("lag", nm1, sep=".")
data[, (nm2):=lapply(.SD, function(x) c(NA, x[-.N])), by=groups, .SDcols=nm1]
 data
#    time groups      value     value1      value2  lag.value lag.value1
#1:    1      b -0.6264538  0.7383247  1.12493092         NA         NA
#2:    2      b  0.1836433  0.5757814 -0.04493361 -0.6264538  0.7383247
#3:    3      b -0.8356286 -0.3053884 -0.01619026  0.1836433  0.5757814
#4:    1      a  1.5952808  1.5117812  0.94383621         NA         NA
#5:    2      a  0.3295078  0.3898432  0.82122120  1.5952808  1.5117812
#6:    3      a -0.8204684 -0.6212406  0.59390132  0.3295078  0.3898432
#7:    4      a  0.4874291 -2.2146999  0.91897737 -0.8204684 -0.6212406
#    lag.value2
#1:          NA
#2:  1.12493092
#3: -0.04493361
#4:          NA
#5:  0.94383621
#6:  0.82122120
#7:  0.59390132

更新情報

から data.table バージョン v1.9.5 を使用することができます。 shift と共に type として lag または lead . デフォルトでは、このタイプは lag .

data[, (nm2) :=  shift(.SD), by=groups, .SDcols=nm1]
#   time groups      value     value1      value2  lag.value lag.value1
#1:    1      b -0.6264538  0.7383247  1.12493092         NA         NA
#2:    2      b  0.1836433  0.5757814 -0.04493361 -0.6264538  0.7383247
#3:    3      b -0.8356286 -0.3053884 -0.01619026  0.1836433  0.5757814
#4:    1      a  1.5952808  1.5117812  0.94383621         NA         NA
#5:    2      a  0.3295078  0.3898432  0.82122120  1.5952808  1.5117812
#6:    3      a -0.8204684 -0.6212406  0.59390132  0.3295078  0.3898432
#7:    4      a  0.4874291 -2.2146999  0.91897737 -0.8204684 -0.6212406
#    lag.value2
#1:          NA
#2:  1.12493092
#3: -0.04493361
#4:          NA
#5:  0.94383621
#6:  0.82122120
#7:  0.59390132

逆が必要な場合は type=lead

nm3 <- paste("lead", nm1, sep=".")

元のデータセットを利用する

  data[, (nm3) := shift(.SD, type='lead'), by = groups, .SDcols=nm1]
  #  time groups      value     value1      value2 lead.value lead.value1
  #1:    1      b -0.6264538  0.7383247  1.12493092  0.1836433   0.5757814
  #2:    2      b  0.1836433  0.5757814 -0.04493361 -0.8356286  -0.3053884
  #3:    3      b -0.8356286 -0.3053884 -0.01619026         NA          NA
  #4:    1      a  1.5952808  1.5117812  0.94383621  0.3295078   0.3898432
  #5:    2      a  0.3295078  0.3898432  0.82122120 -0.8204684  -0.6212406
  #6:    3      a -0.8204684 -0.6212406  0.59390132  0.4874291  -2.2146999
  #7:    4      a  0.4874291 -2.2146999  0.91897737         NA          NA
 #   lead.value2
 #1: -0.04493361
 #2: -0.01619026
 #3:          NA
 #4:  0.82122120
 #5:  0.59390132
 #6:  0.91897737
 #7:          NA

データ

 set.seed(1)
 data <- data.table(time =c(1:3,1:4),groups = c(rep(c("b","a"),c(3,4))),
             value = rnorm(7), value1=rnorm(7), value2=rnorm(7))