1. ホーム
  2. r

[解決済み] 本当に "*apply "ファミリーはベクトル化されていないのか?

2022-05-15 05:24:17

質問

Rの新規ユーザーに対して、よくこう言いますね。 apply がベクトル化されていないことを、Patrick Burnsの R インフェルノ サークル 4 "と書いてある(引用)。

一般的な反射神経として、applyファミリーの関数を使うことがあります。 これは ベクトル化ではなく、ループハディングです。 . apply関数の定義にforループがあります。 を定義しています。lapply関数はループを隠しますが、実行時間は明示的なforループとほぼ同じになる傾向があります。 実行時間は明示的なforループとほぼ等しくなる傾向があります。

確かに、ざっと見たところ apply のソースコードを見てみると、ループがあることがわかります。

grep("for", capture.output(getAnywhere("apply")), value = TRUE)
## [1] "        for (i in 1L:d2) {"  "    else for (i in 1L:d2) {"

ここまではいいのですが、次に lapply または vapply というように、全く異なる図式が見えてきます。

lapply
## function (X, FUN, ...) 
## {
##     FUN <- match.fun(FUN)
##     if (!is.vector(X) || is.object(X)) 
##        X <- as.list(X)
##     .Internal(lapply(X, FUN))
## }
## <bytecode: 0x000000000284b618>
## <environment: namespace:base>

ということで、どうやらRはないようです。 for ループは存在せず、C言語で書かれた内部関数を呼び出しているようです。

をざっと見てみると ウサギ は、ほとんど同じ画像を表示します

さらに colMeans 関数を例にとると、これはベクトル化されていないことを非難されることはありませんでした。

colMeans
# function (x, na.rm = FALSE, dims = 1L) 
# {
#   if (is.data.frame(x)) 
#     x <- as.matrix(x)
#   if (!is.array(x) || length(dn <- dim(x)) < 2L) 
#     stop("'x' must be an array of at least two dimensions")
#   if (dims < 1L || dims > length(dn) - 1L) 
#     stop("invalid 'dims'")
#   n <- prod(dn[1L:dims])
#   dn <- dn[-(1L:dims)]
#   z <- if (is.complex(x)) 
#     .Internal(colMeans(Re(x), n, prod(dn), na.rm)) + (0+1i) * 
#     .Internal(colMeans(Im(x), n, prod(dn), na.rm))
#   else .Internal(colMeans(x, n, prod(dn), na.rm))
#   if (length(dn) > 1L) {
#     dim(z) <- dn
#     dimnames(z) <- dimnames(x)[-(1L:dims)]
#   }
#   else names(z) <- dimnames(x)[[dims + 1]]
#   z
# }
# <bytecode: 0x0000000008f89d20>
#   <environment: namespace:base>

あれ?これもただ単に .Internal(colMeans(... を呼び出すだけです。 ウサギの穴 . とはどう違うのでしょうか? .Internal(lapply(.. ?

実は、簡単なベンチマークで sapply よりも悪くないことがわかります。 colMeans よりも悪くなく for ループよりも優れています。

m <- as.data.frame(matrix(1:1e7, ncol = 1e5))
system.time(colMeans(m))
# user  system elapsed 
# 1.69    0.03    1.73 
system.time(sapply(m, mean))
# user  system elapsed 
# 1.50    0.03    1.60 
system.time(apply(m, 2, mean))
# user  system elapsed 
# 3.84    0.03    3.90 
system.time(for(i in 1:ncol(m)) mean(m[, i]))
# user  system elapsed 
# 13.78    0.01   13.93 

つまり、次のように言ってよいのでしょうか。 lapplyvapply は実際にはベクトル化された (と比較して apply である for を呼び出すループです。 lapply を呼び出す)、そしてパトリック・バーンズが本当に言いたかったことは何だったのでしょうか?

どのように解決するのか?

まず、あなたの例では "data.frame" でテストを行っていますが、これは以下のように公正ではありません。 colMeans , apply"[.data.frame" はオーバーヘッドがあるため

system.time(as.matrix(m))  #called by `colMeans` and `apply`
#   user  system elapsed 
#   1.03    0.00    1.05
system.time(for(i in 1:ncol(m)) m[, i])  #in the `for` loop
#   user  system elapsed 
#  12.93    0.01   13.07

マトリックスでは、少し様子が違います。

mm = as.matrix(m)
system.time(colMeans(mm))
#   user  system elapsed 
#   0.01    0.00    0.01 
system.time(apply(mm, 2, mean))
#   user  system elapsed 
#   1.48    0.03    1.53 
system.time(for(i in 1:ncol(mm)) mean(mm[, i]))
#   user  system elapsed 
#   1.22    0.00    1.21

質問の主な部分をおさらいしておくと、この2つの主な違いは lapply / mapply /などと、ストレートなRループがループ処理を行う場所です。Rolandが指摘するように、CとRのループはどちらも各反復でR関数を評価する必要があり、これは最もコストがかかるものです。本当に高速なC関数は、すべてをCで行うものなので、quot;vectorised"とはこのことなのでしょう。

リスト("list")の各要素の平均を求める例です。

( EDIT 5月11日 '16 : 私は、quot;mean"を求める例は、R関数の反復評価とコンパイルされたコードの違いのための良いセットアップではないと信じています、 (1) Rの平均アルゴリズムの特殊性から、quot;数値"の上に単純な sum(x) / length(x) でテストする方がより理にかなっていること、そして、(2) length(x) >> lengths(x) . そこで、"mean" の例は最後に移動して、別のものに置き換えています)。

簡単な例として、それぞれの反対を見つけることを考えることができます。 length == 1 の各要素の反対を見つけることを考えます。

tmp.c ファイルを作成します。

#include <R.h>
#define USE_RINTERNALS 
#include <Rinternals.h>
#include <Rdefines.h>

/* call a C function inside another */
double oppC(double x) { return(ISNAN(x) ? NA_REAL : -x); }
SEXP sapply_oppC(SEXP x)
{
    SEXP ans = PROTECT(allocVector(REALSXP, LENGTH(x)));
    for(int i = 0; i < LENGTH(x); i++) 
        REAL(ans)[i] = oppC(REAL(VECTOR_ELT(x, i))[0]);

    UNPROTECT(1);
    return(ans);
}

/* call an R function inside a C function;
 * will be used with 'f' as a closure and as a builtin */    
SEXP sapply_oppR(SEXP x, SEXP f)
{
    SEXP call = PROTECT(allocVector(LANGSXP, 2));
    SETCAR(call, install(CHAR(STRING_ELT(f, 0))));

    SEXP ans = PROTECT(allocVector(REALSXP, LENGTH(x)));     
    for(int i = 0; i < LENGTH(x); i++) { 
        SETCADR(call, VECTOR_ELT(x, i));
        REAL(ans)[i] = REAL(eval(call, R_GlobalEnv))[0];
    }

    UNPROTECT(2);
    return(ans);
}

そしてR側では

system("R CMD SHLIB /home/~/tmp.c")
dyn.load("/home/~/tmp.so")

をデータで表示します。

set.seed(007)
myls = rep_len(as.list(c(NA, runif(3))), 1e7)

#a closure wrapper of `-`
oppR = function(x) -x

for_oppR = compiler::cmpfun(function(x, f)
{
    f = match.fun(f)  
    ans = numeric(length(x))
    for(i in seq_along(x)) ans[[i]] = f(x[[i]])
    return(ans)
})

ベンチマークを行う。

#call a C function iteratively
system.time({ sapplyC =  .Call("sapply_oppC", myls) }) 
#   user  system elapsed 
#  0.048   0.000   0.047 

#evaluate an R closure iteratively
system.time({ sapplyRC =  .Call("sapply_oppR", myls, "oppR") }) 
#   user  system elapsed 
#  3.348   0.000   3.358 

#evaluate an R builtin iteratively
system.time({ sapplyRCprim =  .Call("sapply_oppR", myls, "-") }) 
#   user  system elapsed 
#  0.652   0.000   0.653 

#loop with a R closure
system.time({ forR = for_oppR(myls, "oppR") })
#   user  system elapsed 
#  4.396   0.000   4.409 

#loop with an R builtin
system.time({ forRprim = for_oppR(myls, "-") })
#   user  system elapsed 
#  1.908   0.000   1.913 

#for reference and testing 
system.time({ sapplyR = unlist(lapply(myls, oppR)) })
#   user  system elapsed 
#  7.080   0.068   7.170 
system.time({ sapplyRprim = unlist(lapply(myls, `-`)) }) 
#   user  system elapsed 
#  3.524   0.064   3.598 

all.equal(sapplyR, sapplyRprim)
#[1] TRUE 
all.equal(sapplyR, sapplyC)
#[1] TRUE
all.equal(sapplyR, sapplyRC)
#[1] TRUE
all.equal(sapplyR, sapplyRCprim)
#[1] TRUE
all.equal(sapplyR, forR)
#[1] TRUE
all.equal(sapplyR, forRprim)
#[1] TRUE

(平均値の求め方の原型を踏襲しています)。

#all computations in C
all_C = inline::cfunction(sig = c(R_ls = "list"), body = '
    SEXP tmp, ans;
    PROTECT(ans = allocVector(REALSXP, LENGTH(R_ls)));

    double *ptmp, *pans = REAL(ans);

    for(int i = 0; i < LENGTH(R_ls); i++) {
        pans[i] = 0.0;

        PROTECT(tmp = coerceVector(VECTOR_ELT(R_ls, i), REALSXP));
        ptmp = REAL(tmp);

        for(int j = 0; j < LENGTH(tmp); j++) pans[i] += ptmp[j];

        pans[i] /= LENGTH(tmp);

        UNPROTECT(1);
    }

    UNPROTECT(1);
    return(ans);
')

#a very simple `lapply(x, mean)`
C_and_R = inline::cfunction(sig = c(R_ls = "list"), body = '
    SEXP call, ans, ret;

    PROTECT(call = allocList(2));
    SET_TYPEOF(call, LANGSXP);
    SETCAR(call, install("mean"));

    PROTECT(ans = allocVector(VECSXP, LENGTH(R_ls)));
    PROTECT(ret = allocVector(REALSXP, LENGTH(ans)));

    for(int i = 0; i < LENGTH(R_ls); i++) {
        SETCADR(call, VECTOR_ELT(R_ls, i));
        SET_VECTOR_ELT(ans, i, eval(call, R_GlobalEnv));
    }

    double *pret = REAL(ret);
    for(int i = 0; i < LENGTH(ans); i++) pret[i] = REAL(VECTOR_ELT(ans, i))[0];

    UNPROTECT(3);
    return(ret);
')                    

R_lapply = function(x) unlist(lapply(x, mean))                       

R_loop = function(x) 
{
    ans = numeric(length(x))
    for(i in seq_along(x)) ans[i] = mean(x[[i]])
    return(ans)
} 

R_loopcmp = compiler::cmpfun(R_loop)


set.seed(007); myls = replicate(1e4, runif(1e3), simplify = FALSE)
all.equal(all_C(myls), C_and_R(myls))
#[1] TRUE
all.equal(all_C(myls), R_lapply(myls))
#[1] TRUE
all.equal(all_C(myls), R_loop(myls))
#[1] TRUE
all.equal(all_C(myls), R_loopcmp(myls))
#[1] TRUE

microbenchmark::microbenchmark(all_C(myls), 
                               C_and_R(myls), 
                               R_lapply(myls), 
                               R_loop(myls), 
                               R_loopcmp(myls), 
                               times = 15)
#Unit: milliseconds
#            expr       min        lq    median        uq      max neval
#     all_C(myls)  37.29183  38.19107  38.69359  39.58083  41.3861    15
#   C_and_R(myls) 117.21457 123.22044 124.58148 130.85513 169.6822    15
#  R_lapply(myls)  98.48009 103.80717 106.55519 109.54890 116.3150    15
#    R_loop(myls) 122.40367 130.85061 132.61378 138.53664 178.5128    15
# R_loopcmp(myls) 105.63228 111.38340 112.16781 115.68909 128.1976    15